YouTube lecture recording from October 2020
The following YouTube video was recorded for the 2020 iteration of the course.
The material is still very similar:
Complex Numbers
Imaginary numbers
The Imaginary Number i i i :
The polynomial x 2 − 1 = 0 ~~x^2-1=0~~ x 2 − 1 = 0 has two real roots: 1 ~~1~~ 1 and − 1 ~~-1~~ − 1
The polynomial x 2 + 1 = 0 ~~x^2+1=0~~ x 2 + 1 = 0 has no real roots.
Consider solving:
x 2 = 1 a n d x 2 = − 1 x^2 = 1\qquad{\rm and}\qquad x^2 = -1 x 2 = 1 and x 2 = − 1
We introduce an "imaginary" number i ~~i~~ i so that there are two solutions to x 2 = − 1 ~~x^2 = -1~~ x 2 = − 1 : i ~~i~~ i and − i ~~-i~~ − i .
That is, i ~~i~~ i is a number with the property that i 2 = − 1 ~~i^2=-1 i 2 = − 1 .
Complex numbers
The complex numbers are the set of all expressions of the form a + b i a + bi a + bi where i 2 = − 1 i^2=-1 i 2 = − 1 and a a a and b b b are real numbers:
C = { a + b i ∣ a , b ∈ R } \mathbb{C}=\left\{a + bi~~\vert~~a,~b~\in\mathbb{R}\right\} C = { a + bi ∣ a , b ∈ R }
For z = a + b i ∈ C z=a+bi\in\mathbb{C} z = a + bi ∈ C we define the real and imaginary
parts of z z z to be ℜ ( z ) = a {\Re}(z) = a ℜ ( z ) = a and ℑ ( z ) = b \Im(z)=b ℑ ( z ) = b .
The imaginary number i i i has no home on the real number line.
Instead, we locate it on the complex plane at the point ( 0 , 1 ) (0,1) ( 0 , 1 ) .
we can represent any complex number z = a + b i z=a+bi z = a + bi as the point ( a , b ) (a,b) ( a , b ) in the complex plane.
The coordinates ( a , b ) (a,b) ( a , b ) are usually called the cartesian coordinates for z z z .
(Named after the mathematician and philosopher Rene Descartes).
In this plane, the real numbers lie on the horizontal axis.
We usually refer to the horizontal axis of C \mathbb{C} C as the real axis .
The following plot shows a complex number with a real component of 18 and an imaginary component of 12:
Complex conjugates
The complex plane C \mathbb{C} C contains all of the roots of every polynomial.
E.g., let's look at a quadratic equation.
Recall the quadratic formula:
a x 2 + b x + c ⟺ x = − b ± b 2 − 4 a c 2 a ax^2 +bx +c \iff x= {-b \pm\sqrt{b^2-4ac}\over 2a} a x 2 + b x + c ⟺ x = 2 a − b ± b 2 − 4 a c
Now, let's consider this specific quadratic equation:
x 2 − 8 x + 25 = 0 x^2-8x+25 = 0 x 2 − 8 x + 25 = 0
which we can solve using the quadratic formula:
= 8 ± 64 − 100 2 = 8 ± − 36 2 = 8 ± 6 i 2 = 4 ± 3 i ={{8\pm\sqrt{64-100}}\over2}={{8\pm\sqrt{-36}}\over2}={{8\pm6i}\over2}=4\pm3i = 2 8 ± 64 − 100 = 2 8 ± − 36 = 2 8 ± 6 i = 4 ± 3 i
Note that these two roots are reflections of one another through the
real axis. They are conjugates of one another.
In general, let z = a + b i z=a + bi z = a + bi . The conjugate of z z z is the complex number
z ˉ = a − b i \bar{z}=a-bi z ˉ = a − bi .
We can also use Sympy's solve
method to solve polynomials:
Copy import sympy as sp
x = sp . symbols ( 'x' )
sp . solve ( x ** 2 - 8 * x + 25 )
[ 4 − 3 i , 4 + 3 i ] \displaystyle \left[ 4 - 3 i, \ 4 + 3 i\right] [ 4 − 3 i , 4 + 3 i ]
Modulus (size) of a complex number
The distance to a point on the complex plane from 0 is called its modulus , and we find this by calculating the hypotenuse of the triangle with base ℜ ( z ) {\Re}(z) ℜ ( z ) and height ℑ ( z ) \Im(z) ℑ ( z ) :
E.g. The modulus of 4 ± 3 i 4\pm3i 4 ± 3 i is 3 2 + 4 2 = 9 + 16 = 25 = 5 \sqrt{3^2+4^2}=\sqrt{9+16}=\sqrt{25}=5 3 2 + 4 2 = 9 + 16 = 25 = 5
In general, the modulus of z = a + b i z=a+bi z = a + bi is the real number
∣ z ∣ = a 2 + b 2 |z|=\sqrt{a^2+b^2} ∣ z ∣ = a 2 + b 2 .
The modulus is connected to the conjugate by means of the formula
z ⋅ z ˉ = ∣ z ∣ 2 z\cdot \bar{z}=|z|^2 z ⋅ z ˉ = ∣ z ∣ 2 . Indeed:
z ⋅ z ˉ = ( a + b i ) ( a − b i ) = a 2 − ( b i ) 2 = a 2 − b 2 ⋅ i 2 = a 2 − b 2 ( − 1 ) = a 2 + b 2 = ∣ z ∣ 2 \begin{align}
z\cdot\bar{z}&=(a+bi)(a-bi)=a^2-(bi)^2=a^2-b^2\cdot i^2\\
&=a^2-b^2(-1)=a^2+b^2=|z|^2
\end{align} z ⋅ z ˉ = ( a + bi ) ( a − bi ) = a 2 − ( bi ) 2 = a 2 − b 2 ⋅ i 2 = a 2 − b 2 ( − 1 ) = a 2 + b 2 = ∣ z ∣ 2
Complex numbers in Python
Note that, in Python, because i
is often used as an index variable in loops, the language uses j
, instead, to represent the imaginary unit:
Copy x = 1 + 2j
print ( f'x = { x } Re(x) = { x . real } Im(x) = { x . imag } |x| = { abs ( x ) } ' )
Copy x = (1+2j) Re(x) = 1.0 Im(x) = 2.0 |x| = 2.23606797749979
In Sympy, the imaginary unit is sp.I
:
Copy x = 1 + 2 * sp . I
print ( f'x = { x } Re(x) = { sp . re ( x ) } Im(x) = { sp . im ( x ) } |x| = { sp . Abs ( x ) } ' )
Copy x = 1 + 2*I Re(x) = 1 Im(x) = 2 |x| = sqrt(5)
Addition and Subtraction
Addition and subtraction of complex numbers work as you would expect:
( a + b i ) ± ( c + d i ) = ( a ± c ) + ( b ± d ) i (a+bi)\pm(c+di)=(a\pm c) + (b\pm d)i ( a + bi ) ± ( c + d i ) = ( a ± c ) + ( b ± d ) i
− ( a + b i ) = − a − b i -(a+bi)=-a-bi − ( a + bi ) = − a − bi
Try adding: ( 5 + 6 i ) + ( 1 − i ) (5+6i)+(1-i) ( 5 + 6 i ) + ( 1 − i ) :
Copy print ( ( 5 + 6j ) + ( 1 - 1j ) )
Try subtracting: ( 5 + 6 i ) − ( 1 − i ) (5+6i)-(1-i) ( 5 + 6 i ) − ( 1 − i ) :
Copy print ( ( 5 + 6j ) - ( 1 - 1j ) )
Multiplication
Multiplication is not quite so convenient in cartesian coordinates:
( a + b i ) ( c + d i ) = a c + a d i + b c i + b i d i = a c + a d i + b c i − b d = ( a c − b d ) + ( a d + b c ) i \begin{align*}
(a+bi)(c+di)&=ac + adi + bci + bidi \\ &= ac + adi + bci -bd \\ &=
(ac-bd)+(ad+bc)i
\end{align*} ( a + bi ) ( c + d i ) = a c + a d i + b c i + bi d i = a c + a d i + b c i − b d = ( a c − b d ) + ( a d + b c ) i
Try multiplying: ( 5 + 6 i ) ( 1 − i ) (5+6i)(1-i) ( 5 + 6 i ) ( 1 − i ) :
Copy print ( ( 5 + 6j ) * ( 1 - 1j ) )
Division
Division is even more awkward in cartesian coordinates: we have to multiply the numerator and the denominator by the complex conjugate of the denominator.
a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 = ( a c + b d c 2 + d 2 ) + ( b c − a d c 2 + d 2 ) i \begin{align*}
{{a+bi}\over{c+di}}&={{(a+bi)(c-di)}\over{(c+di)(c-di)}}\\
&={{(ac+bd)+(bc-ad)i}\over{c^2+d^2}}=\left({{ac+bd}\over{c^2+d^2}}\right)+
\left({{bc-ad}\over{c^2+d^2}}\right)i
\end{align*} c + d i a + bi = ( c + d i ) ( c − d i ) ( a + bi ) ( c − d i ) = c 2 + d 2 ( a c + b d ) + ( b c − a d ) i = ( c 2 + d 2 a c + b d ) + ( c 2 + d 2 b c − a d ) i
Try dividing: ( − 4 + 7 i ) ( 2 + 3 i ) {(-4+7i)\over (2+3i)} ( 2 + 3 i ) ( − 4 + 7 i ) :
Copy print ( ( - 4 + 7 * sp . I ) / ( 2 + 3 * sp . I ) )
Copy (-4 + 7*I)*(2 - 3*I)/13
Polar Coordinates
It is often convenient to represent the complex number z = a + b i z = a + bi z = a + bi in terms of its polar coordinates ⟨ r , θ ⟩ \langle r,\theta\rangle ⟨ r , θ ⟩ .
The angle θ \theta θ is called the argument of z z z .
The real number r = ∣ z ∣ r=|z| r = ∣ z ∣ is sometimes denoted mod( z ) (z) ( z ) .
Connection between cartesian and polar
Let z = x + i y z=x+iy z = x + i y .
If we are given the polar coordinates of z z z and want to express the cartesian coordinates use
x = r cos θ x=r\cos\theta x = r cos θ > y = r sin θ y=r\sin\theta y = r sin θ > z = r cos θ + r i sin θ = r ( cos θ + i sin θ ) z=r\cos\theta + ri\sin\theta=r(\cos\theta + i\sin\theta) z = r cos θ + r i sin θ = r ( cos θ + i sin θ )
If we are given the cartesian coordinates and want to find the polar coordinates, use:
r = m o d ( z ) = ∣ z ∣ = x 2 + y 2 r={\rm mod}(z)=|z|=\sqrt{x^2+y^2} r = mod ( z ) = ∣ z ∣ = x 2 + y 2
θ = a r g ( z ) = tan − 1 y x = { π / 2 , i f x = 0 , y > 0 − π / 2 , i f x = 0 , y < 0 arctan ( y x ) , i f x > 0 arctan ( y x ) + π , i f x < 0 , y ≥ 0 arctan ( y x ) − π , i f x < 0 , y < 0 \begin{align*}
\theta={\rm arg}(z)=\tan^{-1}{y\over x}=
\begin{cases}\pi/2,&{\rm ~if~}~~ x=0,y>0 \\
-\pi/2,&{\rm ~if~}~~ x=0,y<0 \\
\arctan\left({y\over x}\right),&{\rm ~if~}~~ x>0\\
\arctan\left({y\over x}\right)+\pi,&{\rm ~if~}~~ x<0, y\geq 0\\
\arctan\left({y\over x}\right)-\pi,&{\rm ~if~}~~ x<0, y<0\\
\end{cases}
\end{align*} θ = arg ( z ) = tan − 1 x y = ⎩ ⎨ ⎧ π /2 , − π /2 , arctan ( x y ) , arctan ( x y ) + π , arctan ( x y ) − π , if x = 0 , y > 0 if x = 0 , y < 0 if x > 0 if x < 0 , y ≥ 0 if x < 0 , y < 0
Not: all of the fuss about the value of θ \theta θ in the formula above is to make sure that z z z gets into the proper quadrant.
Beware of the sign of this tangent: it depends on which quadrant you are in.
The positive x x x axis is defined as having θ = 0 \theta=0 θ = 0 and positive θ \theta θ goes in an anticlockwise sense around the x − y x-y x − y plane.
Some examples
1
Find the cartesian coordinates for the complex number z z z with polar coordinates r = 2 r=2 r = 2 and θ = π / 6 \theta=\pi/6 θ = π /6 .
ℜ ( z ) = x = r cos θ = 2 cos ( π / 6 ) = 2 ( 3 2 ) = 3 \Re(z)=x=r\cos\theta=2\cos(\pi/6)=2\left({{\sqrt{3}\over2}}\right)=\sqrt{3} ℜ ( z ) = x = r cos θ = 2 cos ( π /6 ) = 2 ( 2 3 ) = 3 > ℑ ( z ) = y = r sin θ = 2 sin ( π / 6 ) = 2 ( 1 2 ) = 1 \Im(z)=y=r\sin\theta=2\sin(\pi/6)=2\left({{1\over2}}\right)=1 ℑ ( z ) = y = r sin θ = 2 sin ( π /6 ) = 2 ( 2 1 ) = 1
Therefore, z = 3 + i z = \sqrt{3} + i z = 3 + i .
Copy import cmath
import numpy as np
print ( cmath . rect ( 2 , np . pi / 6 ) )
Copy (1.7320508075688774+0.9999999999999999j)
2
Find the polar coordinates for the complex number z = − 3 + 4 i z= -3+4i z = − 3 + 4 i .
∣ z ∣ = r = |z|=r = ∣ z ∣ = r =
( − 3 ) 2 + 4 2 = 25 = 5 \sqrt{(-3)^2+4^2}=\sqrt{25}=5 ( − 3 ) 2 + 4 2 = 25 = 5
a r g ( z ) = θ = arctan ( y x ) = {\rm arg}(z)=\theta=\arctan\left({{y}\over{x}}\right)= arg ( z ) = θ = arctan ( x y ) =
− 0.93 + π r a d i a n s ≈ 12 7 ∘ -0.93+\pi{\rm ~radians}\approx 127^\circ − 0.93 + π radians ≈ 12 7 ∘
Copy print ( cmath . polar ( - 3 + 4j ) )
Copy (5.0, 2.214297435588181)
3
Find the polar coordinates for the complex number z = − 2 i z= -2i z = − 2 i .
m o d ( z ) = r = ∣ z ∣ = 2 {\rm mod}(z)=r = |z|=2 mod ( z ) = r = ∣ z ∣ = 2 > a r g ( z ) = θ = − π 2 {\rm arg}(z)=\theta=-{{\pi}\over2} arg ( z ) = θ = − 2 π
Copy print ( cmath . polar ( - 2j ) )
Copy (2.0, -1.5707963267948966)
Multiplication in Polar Coordinates
First a reminder of three useful and important identities:
cos 2 θ + sin 2 θ = 1 \cos^2\theta + \sin^2\theta = 1 cos 2 θ + sin 2 θ = 1 > cos ( θ 1 + θ 2 ) = cos θ 1 cos θ 2 − sin θ 1 sin θ 2 \cos(\theta_1+\theta_2)=\cos\theta_1\cos \theta_2 - \sin\theta_1\sin\theta_2 cos ( θ 1 + θ 2 ) = cos θ 1 cos θ 2 − sin θ 1 sin θ 2 > sin ( θ 1 + θ 2 ) = sin θ 1 cos θ 2 + sin θ 2 cos θ 1 \sin(\theta_1+\theta_2)=\sin\theta_1\cos \theta_2 + \sin\theta_2\cos\theta_1 sin ( θ 1 + θ 2 ) = sin θ 1 cos θ 2 + sin θ 2 cos θ 1
Now, let z 1 = r 1 cos θ 1 + i r 1 sin θ 1 z_1=r_1\cos\theta_1+ir_1\sin\theta_1 z 1 = r 1 cos θ 1 + i r 1 sin θ 1 and z 2 = r 2 cos θ 2 + i r 2 sin θ 2 z_2=r_2\cos\theta_2+ir_2\sin\theta_2 z 2 = r 2 cos θ 2 + i r 2 sin θ 2 .
We first compute the real part of the product z 1 ⋅ z 2 z_1\cdot z_2 z 1 ⋅ z 2 :
ℜ ( z 1 ⋅ z 2 ) = r 1 cos θ 1 ⋅ r 2 cos θ 2 − r 1 sin θ 1 ⋅ r 2 sin θ 2 = r 1 r 2 ( cos θ 1 cos θ 2 − sin θ 1 sin θ 2 ) = r 1 r 2 cos ( θ 1 + θ 2 ) \begin{align*}
\Re(z_1\cdot z_2) &= r_1\cos\theta_1\cdot r_2\cos\theta_2 - r_1\sin\theta_1\cdot
r_2\sin\theta_2\cr
&=r_1r_2(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2)\cr
&=r_1r_2\cos(\theta_1 + \theta_2)
\end{align*} ℜ ( z 1 ⋅ z 2 ) = r 1 cos θ 1 ⋅ r 2 cos θ 2 − r 1 sin θ 1 ⋅ r 2 sin θ 2 = r 1 r 2 ( cos θ 1 cos θ 2 − sin θ 1 sin θ 2 ) = r 1 r 2 cos ( θ 1 + θ 2 )
Note that for the real part the moduli have been multiplied and the arguments added.
Now we compute the imaginary part of z 1 ⋅ z 2 z_1\cdot z_2 z 1 ⋅ z 2 :
ℑ ( z 1 ⋅ z 2 ) = r 1 sin θ 1 ⋅ r 2 cos θ 2 + r 2 sin θ 2 ⋅ r 1 cos θ 1 = r 1 r 2 ( sin θ 1 cos θ 2 − sin θ 2 cos θ 1 ) = r 1 r 2 sin ( θ 1 + θ 2 ) \begin{align*}
\Im(z_1\cdot z_2) &= r_1\sin\theta_1\cdot r_2\cos\theta_2 + r_2\sin\theta_2\cdot
r_1\cos\theta_1\cr
&=r_1r_2(\sin\theta_1\cos\theta_2 - \sin\theta_2\cos\theta_1)\cr
&=r_1r_2\sin(\theta_1 + \theta_2)
\end{align*} ℑ ( z 1 ⋅ z 2 ) = r 1 sin θ 1 ⋅ r 2 cos θ 2 + r 2 sin θ 2 ⋅ r 1 cos θ 1 = r 1 r 2 ( sin θ 1 cos θ 2 − sin θ 2 cos θ 1 ) = r 1 r 2 sin ( θ 1 + θ 2 )
For the imaginary part too, the moduli multiply while the arguments add.
This gives a relatively compact and highly geometric result for the product:
z 1 ⋅ z 2 = r 1 r 2 ( cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ) z_1\cdot z_2 = r_1r_2(\cos(\theta_1 + \theta_2)+i\sin(\theta_1 + \theta_2)) z 1 ⋅ z 2 = r 1 r 2 ( cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ))
It is multiplicative in the modulus and additive in the argument:
∣ z 1 z 2 ∣ = ∣ z 1 ⋅ ∣ z 2 ∣ |z_1z_2|= |z_1\cdot |z_2| ∣ z 1 z 2 ∣ = ∣ z 1 ⋅ ∣ z 2 ∣ > arg ( z 1 z 2 ) = arg ( z 1 ) + arg ( z 2 ) \arg(z_1z_2)=\arg (z_1)+ \arg( z_2) arg ( z 1 z 2 ) = arg ( z 1 ) + arg ( z 2 )
This means that when we multiply by z z z , we are rotating through the angle arg ( z ) \arg(z) arg ( z ) and radially stretching by a factor of ∣ z ∣ |z| ∣ z ∣ .
First, think of z = cos θ + i sin θ z=\cos\theta + i\sin\theta z = cos θ + i sin θ as a function of θ \theta θ and differentiate with respect to θ \theta θ :
( 1 ) d z d θ = d d θ ( cos θ + i sin θ ) = − sin θ + i cos θ {\rm~~(1)~~~~}\frac{{\rm d}z}{{\rm d}\theta}=\frac{{\rm d}}{{\rm d}\theta}\left(\cos\theta+i\sin\theta\right)=-\sin\theta+i\cos\theta ( 1 ) d θ d z = d θ d ( cos θ + i sin θ ) = − sin θ + i cos θ
Next notice that the right-hand side is just the product i z iz i z :
( 2 ) i z = i ( cos θ + i sin θ ) = i cos θ + i 2 sin θ = − sin θ + i cos θ {\rm~~(2)~~~~}iz=i(\cos\theta+i\sin\theta)=i\cos\theta+i^2\sin\theta=-\sin\theta+i\cos\theta ( 2 ) i z = i ( cos θ + i sin θ ) = i cos θ + i 2 sin θ = − sin θ + i cos θ
Thus, from (1) and (2), d z d θ = i z \frac{{\rm d}z}{{\rm d}\theta}=iz d θ d z = i z
This is a separable differential equation (which we will cover properly in the remainder of the course):
∫ d z i z = ∫ d θ ⇒ 1 i ln z = θ + c ⇒ ln z = i θ + i c \int{dz\over iz}=\int d\theta~~~~~~~~~\Rightarrow~~~~~~{1\over i}~\ln z =\theta +c~~~~\Rightarrow~~~~\ln z =i\theta +ic ∫ i z d z = ∫ d θ ⇒ i 1 ln z = θ + c ⇒ ln z = i θ + i c
z = e i θ + i c = e i θ e i c = A e i θ w i t h A = e i c z=e^{i\theta+ic}~~=~~e^{i\theta}~e^{ic}~~=~~Ae^{i\theta}~~~~{\rm~ with}~~~~ A=e^{ic} z = e i θ + i c = e i θ e i c = A e i θ with A = e i c
When θ = 0 \theta=0 θ = 0 , z = 1 z=1 z = 1 , giving A = 1 A=1 A = 1 , so:
z = cos θ + i sin θ = e i θ ( 3 ) z=\cos\theta + i \sin\theta=e^{i\theta}~~~~~~~~~~~~\rm (3) z = cos θ + i sin θ = e i θ ( 3 )
Similarly, we can show that:
z = cos θ − i sin θ = e − i θ ( 4 ) z=\cos\theta - i \sin\theta=e^{-i\theta}~~~~~~~~~~~~\rm (4) z = cos θ − i sin θ = e − i θ ( 4 )
Adding (3) and (4), and subtracting (3) and (4) gives:
cos θ = e i θ + e − i θ 2 sin θ = e i θ − e − i θ 2 i \cos\theta ={e^{i\theta}+ e^{-i\theta}\over 2}~~~~~~~~~~~~~~~~~~~~~~~~~\sin\theta ={ e^{i\theta}-e^{-i\theta}\over 2i} cos θ = 2 e i θ + e − i θ sin θ = 2 i e i θ − e − i θ
This demonstrates that any complex number can be written:
z = x + i y = r ( cos θ + i sin θ ) = r e i θ z=x+iy=r(\cos\theta + i\sin\theta)=r~e^{i\theta} z = x + i y = r ( cos θ + i sin θ ) = r e i θ
Several important consequences
Any complex number can be written in the polar form z = r e i θ z = re^{i\theta} z = r e i θ where r = ∣ z ∣ r=|z| r = ∣ z ∣ and θ = arg ( z ) \theta=\arg(z) θ = arg ( z ) .
The unit circle in C \mathbb{C} C consists exactly of those complex numbers with
modulus equal to 1, that is the numbers e i θ e^{i\theta} e i θ .
Multiplication on the unit circle r = 1 r=1 r = 1 can be carried out by adding the
angles:
e i θ 1 ⋅ e i θ 2 = e i ( θ 1 + θ 2 ) e^{i\theta_1}\cdot e^{i\theta_2} = e^{i(\theta_1+\theta_2)} e i θ 1 ⋅ e i θ 2 = e i ( θ 1 + θ 2 ) > z = x + i y = r ( cos θ + i sin θ ) = r e i θ z=x+iy=r(\cos\theta + i\sin\theta)=r~e^{i\theta} z = x + i y = r ( cos θ + i sin θ ) = r e i θ
Exponentiation on the unit circle r = 1 r=1 r = 1 can be done by multiplying the angle by the index:
( e i θ ) n = e i θ n = e i ( n θ ) \left(e^{i\theta}\right)^n = e^{i\theta n}=e^{i(n\theta)} ( e i θ ) n = e i θ n = e i ( n θ )
This result is known as DeMoivre's Theorem . It is usually stated in its cartesian form:
( cos θ + i sin θ ) n = cos ( n θ ) + i sin ( n θ ) (\cos\theta + i\sin\theta)^n=\cos(n\theta) + i\sin(n\theta) ( cos θ + i sin θ ) n = cos ( n θ ) + i sin ( n θ )
Finally, the famous identity by Leonhard Euler
e π i + 1 = 0 e^{\pi i}+1=0 e πi + 1 = 0
Introductory problems
Introductory problems 1
2 − 2 i + 3 + i \displaystyle 2-2i\quad+\quad 3+i 2 − 2 i + 3 + i
4 − 6 i + 19 + 4 i \displaystyle 4-6i\quad+\quad 19+4i 4 − 6 i + 19 + 4 i
( 1 − i ) 2 \displaystyle (1-i)^2 ( 1 − i ) 2
( 2 + i ) 2 \displaystyle (2+i)^2 ( 2 + i ) 2
( 4 − 3 i ) / ( 2 + 6 i ) \displaystyle (4-3i)/(2+6i) ( 4 − 3 i ) / ( 2 + 6 i )
( 1 + 2 i ) / ( 1 − 3 i ) \displaystyle (1+2i)/(1-3i) ( 1 + 2 i ) / ( 1 − 3 i )
( 2 − i ) − 2 + ( 2 + i ) − 2 \displaystyle (2-i)^{-2} +(2+i)^{-2} ( 2 − i ) − 2 + ( 2 + i ) − 2
( 5 − i ) − 2 − ( 5 + i ) − 2 \displaystyle (5-i)^{-2} -(5+i)^{-2} ( 5 − i ) − 2 − ( 5 + i ) − 2
Introductory problems 2 Find the sum, difference, product and quotient of the complex numbers z 1 = 5 + 3 i \displaystyle z_1=5+3i z 1 = 5 + 3 i and z 2 = − 4 + 2 i \displaystyle z_2=-4+2i z 2 = − 4 + 2 i .
Main problems
Main problems 1 Solve the following equations for z z z :
( 7 + i ) z − 3 i = 6 \displaystyle (7 + i)z - 3i = 6 ( 7 + i ) z − 3 i = 6
( z − i ) ( z + i ) = 2 3 \displaystyle {(z-i)\over (z+i)}={2\over 3} ( z + i ) ( z − i ) = 3 2
z 2 + ( 1 + 4 i ) z + ( 15 + 27 i ) = 0 \displaystyle z^2 + (1+4i)z + (15 + 27 i) = 0 z 2 + ( 1 + 4 i ) z + ( 15 + 27 i ) = 0
Main problems 2 Represent the complex numbers z 1 = 5 − 2 i \displaystyle z_1= 5-2i z 1 = 5 − 2 i and z 2 = − 2 + 4 i \displaystyle z_2=-2 +4i z 2 = − 2 + 4 i on a sketch/plot of the complex plane (an Argand diagram).
Write down z 1 z_1 z 1 and z 2 z_2 z 2 in polar form (either give r r r and θ \theta θ for each, or write them as exponentials).
What is the product of z 1 z_1 z 1 and z 2 z_2 z 2 ?
Main problems 3 Find the sum, difference, product and quotient of the complex numbers z 1 = 5 e 4 i \displaystyle z_1=5e^{4i} z 1 = 5 e 4 i and z 2 = 3 e − 2 i \displaystyle z_2=3e^{-2i} z 2 = 3 e − 2 i .
Can you represent the results on an Argand diagram?
Main problems 4 What are the ( x , y ) \displaystyle (x,y) ( x , y ) coordinates of the complex number 5 e 4 i \displaystyle 5e^{4i} 5 e 4 i ?
Main problems 5 If z = 1 + i \displaystyle z=1+i z = 1 + i , mark on an Argand diagram the four points A , B , C a n d D \displaystyle A, B, C {\rm ~and~} D A , B , C and D representing z , z 2 , z 3 a n d z 4 \displaystyle z, z^2, z^3 {\rm ~and~} z^4 z , z 2 , z 3 and z 4 respectively.
Find by calculation or from your diagram, the moduli and arguments of the complex numbers z 2 − 1 \displaystyle z^2-1 z 2 − 1 and z + z 4 \displaystyle z+z^4 z + z 4 .
Main problems 6 Find the complex numbers represented by the vertices of a square if one vertex represents 3 + 3 i \displaystyle 3+3i 3 + 3 i and the centre of the square represents 1 + 2 i \displaystyle 1+2i 1 + 2 i .
Extension problems
Extension problems 1 Experiment with using Python to solve the problems and confirm your pen & paper solutions.