YouTube lecture recording from October 2020
The following YouTube video was recorded for the 2020 iteration of the course.
The material is still very similar:
Integration by Parts and by Partial Fractions
Integration reverses the process of differentiation
In general
d ( a x n + 1 ) d x = ( n + 1 ) a x n ⇒ ∫ x 1 x 2 a x n d x = [ a ( n + 1 ) x ( n + 1 ) ] x 1 x 2 \displaystyle {d(a\thinspace x^{n+1})\over dx}=(n+1)a\thinspace~x^n~~~~~\Rightarrow ~~~~\int_{x_1}^{x_2} a\thinspace x^n~dx = \biggr[{a\over(n+1)} \thinspace x^{(n+1)}\biggl]_{x_1}^{x_2} d x d ( a x n + 1 ) = ( n + 1 ) a x n ⇒ ∫ x 1 x 2 a x n d x = [ ( n + 1 ) a x ( n + 1 ) ] x 1 x 2
Reminder: method 1: integration by substitution
This method can be thought of as an integral version of the chain rule.
Suppose we wish to integrate:
I = ∫ f ( g ( x ) ) d x = ∫ f ( u ) d x \displaystyle I=\int f(g(x))~dx= \int f(u)~dx I = ∫ f ( g ( x )) d x = ∫ f ( u ) d x > I = ∫ f ( u ) d x d u d u \displaystyle I =\int f(u){dx\over du}~du I = ∫ f ( u ) d u d x d u
Integration Method 2: Integration by Parts
d d x f ( x ) g ( x ) = f ( x ) g ′ ( x ) + g ( x ) f ′ ( x ) \displaystyle {d\over dx}f(x)~g(x)=f(x)~g'(x)+ g(x)~f'(x) d x d f ( x ) g ( x ) = f ( x ) g ′ ( x ) + g ( x ) f ′ ( x )
Integrate and rearrange to get:
∫ a b f ( x ) g ′ ( x ) d x = [ f ( x ) g ( x ) ] a b − ∫ a b g ( x ) f ′ ( x ) d x \displaystyle \int\limits_a^b f(x)~g'(x)~dx=\biggr[\;f(x)~g(x)\;\biggl]_a^b-\int\limits_a^b g(x)~f'(x)~dx a ∫ b f ( x ) g ′ ( x ) d x = [ f ( x ) g ( x ) ] a b − a ∫ b g ( x ) f ′ ( x ) d x
This is known as the formula for 'integrating by parts' and can also be written:
∫ a b u d v d x d x = [ u v ] a b − ∫ a b v d u d x d x \displaystyle \int\limits_a^b u~{dv\over dx}~dx ~~= ~~ \biggr[uv\biggl]^b_a-\int\limits_a^b v~{du\over dx}~dx a ∫ b u d x d v d x = [ uv ] a b − a ∫ b v d x d u d x
∫ a b u v ′ d x = [ u v ] a b − ∫ a b v u ′ d x \displaystyle \int\limits_a^b u~v'~dx~~ =~~ \biggr[uv\biggl]^b_a-\int\limits_a^b v~u'~dx a ∫ b u v ′ d x = [ uv ] a b − a ∫ b v u ′ d x
with f ( x ) ≡ u f(x) \equiv u f ( x ) ≡ u and g ( x ) ≡ v g(x) \equiv v g ( x ) ≡ v .
Integration by parts: Example 1
∫ a b x ( x + 1 ) d x = ∫ a b x ( x + 1 ) 1 / 2 d x \displaystyle \int\limits_a^b x~\sqrt{(x+1)}~dx=\int\limits_a^b x~(x+1)^{1/2}~dx a ∫ b x ( x + 1 ) d x = a ∫ b x ( x + 1 ) 1/2 d x
u = x a n d v ′ = ( x + 1 ) \displaystyle u=x\qquad{\rm and}\qquad v'=\sqrt{(x+1)} u = x and v ′ = ( x + 1 )
u ′ = 1 a n d v = 2 3 ( x + 1 ) 3 / 2 \displaystyle u'=1\qquad{\rm and}\qquad v={2 \over 3}(x+1)^{3/2} u ′ = 1 and v = 3 2 ( x + 1 ) 3/2 .
u = x a n d v ′ = ( x + 1 ) \displaystyle u=x\qquad{\rm and}\qquad v'=\sqrt{(x+1)} u = x and v ′ = ( x + 1 )
u ′ = 1 a n d v = 2 3 ( x + 1 ) 3 / 2 \displaystyle u'=1\qquad{\rm and}\qquad v={2 \over 3}(x+1)^{3/2} u ′ = 1 and v = 3 2 ( x + 1 ) 3/2
∫ a b x ( x + 1 ) d x = [ x 2 3 ( x + 1 ) 3 / 2 ] a b − ∫ a b 1 × 2 3 ( x + 1 ) 3 / 2 d x \displaystyle \int\limits_a^b x~\sqrt{(x+1)}~dx =\biggr[x~{2\over 3}(x+1)^{3/2}\biggl]_a^b - \int\limits_a^b 1 \times {2\over 3}(x+1)^{3/2}~dx a ∫ b x ( x + 1 ) d x = [ x 3 2 ( x + 1 ) 3/2 ] a b − a ∫ b 1 × 3 2 ( x + 1 ) 3/2 d x > = [ 2 3 x ( x + 1 ) 3 / 2 ] a b − [ 2 3 ⋅ 2 5 ( x + 1 ) 5 / 2 ] a b \displaystyle =\biggr[{2\over 3}~x~(x+1)^{3/2}\biggl]_a^b- \biggr[{2\over 3}\cdot {2\over 5}(x+1)^{5/2}\biggl]_a^b = [ 3 2 x ( x + 1 ) 3/2 ] a b − [ 3 2 ⋅ 5 2 ( x + 1 ) 5/2 ] a b
If we had chosen the other option for u u u and v ′ v' v ′ we would have got:
[ ( x + 1 ) 1 / 2 x 2 2 ] a b − ∫ a b 1 2 1 ( x + 1 ) x 2 2 d x \displaystyle \biggr[(x+1)^{1/2}~{x^2\over 2}\biggl]_a^b - \int\limits_a^b {1\over 2}~{1\over \sqrt{(x+1)}}~{x^2\over 2}~dx [ ( x + 1 ) 1/2 2 x 2 ] a b − a ∫ b 2 1 ( x + 1 ) 1 2 x 2 d x
The second term is worse than the integral we started with!
It's important to choose u u u and v v v carefully.
This comes with practice.
Integration by parts: Example 2
Let us calculate the indefinite integral,
∫ ln x d x \displaystyle \int \ln x~dx ∫ ln x d x
We can do a bit of a trick. Let:
u = ln x ⟹ u ′ = 1 x a n d v ′ = 1 ⟹ v = x \displaystyle u=\ln x \quad\Longrightarrow\quad u'={1\over x}\qquad{\rm and}\qquad v'=1\Longrightarrow v=x u = ln x ⟹ u ′ = x 1 and v ′ = 1 ⟹ v = x
Putting these into our equation:
∫ ln x d x = ln x ⋅ x − ∫ x 1 x d x \displaystyle \int \ln x~dx\quad=\quad\ln x~\cdot x - \int x~\frac{1}{x}dx ∫ ln x d x = ln x ⋅ x − ∫ x x 1 d x > = x ln x − ∫ 1 d x = x ln x − x + C \displaystyle = \quad x \ln x - \int 1 dx\quad=\quad x \ln x - x + C = x ln x − ∫ 1 d x = x ln x − x + C
We can also check this calculation using SymPy:
Copy import sympy as sp
x = sp . symbols ( 'x' )
sp . integrate ( sp . log ( x ) , x )
x log ( x ) − x \displaystyle x \log{\left(x \right)} - x x log ( x ) − x
Integration by parts: Example 3
∫ 0 ∞ x 3 e − x d x \displaystyle \int\limits^{\infty}_0 x^3~e^{-x}~dx 0 ∫ ∞ x 3 e − x d x
( ∫ u v ′ d x = [ u v ] − ∫ v u ′ d x ) \displaystyle \biggl(\int u\thinspace v'\thinspace dx = [u\thinspace v]-\int v\thinspace u'\thinspace dx\biggr) ( ∫ u v ′ d x = [ u v ] − ∫ v u ′ d x )
u = x 3 a n d v ′ = e − x \displaystyle u=x^3\qquad{\rm and}\qquad v'=e^{-x} u = x 3 and v ′ = e − x
u ′ = 3 x 2 a n d v = − e − x \displaystyle u'=3x^2\qquad{\rm and}\qquad v=-e^{-x} u ′ = 3 x 2 and v = − e − x
∫ 0 ∞ x 3 e − x d x = − [ x 3 e − x ] 0 ∞ + ∫ 0 ∞ 3 x 2 e − x d x \displaystyle \int\limits^{\infty}_0 x^3~e^{-x}~dx=-\biggr[x^3~e^{-x}\biggl]^{\infty}_0 +\int\limits^{\infty}_0 3x^2~e^{-x}~dx 0 ∫ ∞ x 3 e − x d x = − [ x 3 e − x ] 0 ∞ + 0 ∫ ∞ 3 x 2 e − x d x
Now apply integration by parts to the right-hand side:
u = 3 x 2 a n d v ′ = e − x \displaystyle u=3x^2\qquad{\rm and}\qquad v'=e^{-x} u = 3 x 2 and v ′ = e − x
u ′ = 6 x a n d v = − e − x \displaystyle u'=6x\qquad{\rm and}\qquad v=-e^{-x} u ′ = 6 x and v = − e − x
∫ 0 ∞ 3 x 2 e − x d x = − [ 3 x 2 e − x ] 0 ∞ + ∫ 0 ∞ 6 x e − x d x \displaystyle \int\limits^{\infty}_0 3x^2~e^{-x}~dx=-\biggr[3x^2~e^{-x}\biggl]^{\infty}_0 +\int\limits^{\infty}_0 6x~e^{-x}~dx 0 ∫ ∞ 3 x 2 e − x d x = − [ 3 x 2 e − x ] 0 ∞ + 0 ∫ ∞ 6 x e − x d x
u = 6 x a n d v ′ = e − x \displaystyle u=6x\qquad{\rm and}\qquad v'=e^{-x} u = 6 x and v ′ = e − x
u ′ = 6 a n d v = − e − x \displaystyle u'=6\qquad{\rm and}\qquad v=-e^{-x} u ′ = 6 and v = − e − x
∫ 0 ∞ 6 x e − x d x = − [ 6 x e − x ] 0 ∞ + ∫ 0 ∞ 6 e − x d x \displaystyle \int\limits^{\infty}_0 6x~e^{-x}~dx =-\biggr[6x~e^{-x}\biggl]^{\infty}_0 +\int\limits^{\infty}_0 6~e^{-x}~dx 0 ∫ ∞ 6 x e − x d x = − [ 6 x e − x ] 0 ∞ + 0 ∫ ∞ 6 e − x d x > ⟹ ∫ 0 ∞ 6 e − x d x = − [ 6 e − x ] 0 ∞ = − 6 e − ∞ + 6 e 0 = 6 \displaystyle \Longrightarrow \int\limits^{\infty}_0 6~e^{-x}~dx=-\biggr[6~e^{-x}\biggl]^{\infty}_0=-6e^{-\infty}+6e^0=6 ⟹ 0 ∫ ∞ 6 e − x d x = − [ 6 e − x ] 0 ∞ = − 6 e − ∞ + 6 e 0 = 6
(Since e − ∞ = 0 e^{-\infty}=0 e − ∞ = 0 and e 0 = 1 e^0=1 e 0 = 1 )
The other terms all go to zero:
− [ x 3 e − x ] 0 ∞ = − ∞ 3 e − ∞ + 0 = 0 \displaystyle -\bigr[x^3~e^{-x}\bigl]^{\infty}_0 =-{\infty}^3~e^{-\infty} + 0 =0 − [ x 3 e − x ] 0 ∞ = − ∞ 3 e − ∞ + 0 = 0 > − [ 3 x 2 e − x ] 0 ∞ = − 3 ∞ 2 e − ∞ + 0 = 0 \displaystyle -\bigr[3x^2~e^{-x}\bigl]^{\infty}_0 =-3{\infty}^2~e^{-\infty} + 0 =0 − [ 3 x 2 e − x ] 0 ∞ = − 3 ∞ 2 e − ∞ + 0 = 0
So, to answer our original question:
∫ 0 ∞ x 3 e − x d x = 6 \displaystyle \int\limits^{\infty}_0 x^3~e^{-x}~dx=6 0 ∫ ∞ x 3 e − x d x = 6
Let's also check it with SymPy:
Copy sp . integrate ( x ** 3 * sp . exp ( - x ) , ( x , 0 , sp . oo ) )
This result actually generalises:
∫ 0 ∞ x n e − x d x = n ! \displaystyle \int\limits^{\infty}_0 x^n~e^{-x}~dx=n! 0 ∫ ∞ x n e − x d x = n !
Integration by parts: Example 4, trigonometry
d d x ( sin x ) = cos x \displaystyle {d\over dx}(\sin x)=\cos x d x d ( sin x ) = cos x > d d x ( cos x ) = − sin x \displaystyle {d\over dx}(\cos x)=-\sin x d x d ( cos x ) = − sin x
Let's try and calculate the following integral:
∫ a b cos x e − x d x = I \displaystyle \int\limits^b_a~\cos x\;e^{-x}~dx = I a ∫ b cos x e − x d x = I
u = cos x a n d v ′ = e − x \displaystyle u=\cos x\qquad{\rm and}\qquad v'=e^{-x} u = cos x and v ′ = e − x
u ′ = − sin x a n d v = − e − x \displaystyle u'=-\sin x\qquad{\rm and}\qquad v=-e^{-x} u ′ = − sin x and v = − e − x
I = [ − cos x e − x ] a b − ∫ a b ( − ) sin x ( − ) e − x d x \displaystyle I =\biggr[-\cos x~\; e^{-x}\biggl]^b_a -\int\limits^b_a ~(-)\sin x~(-)e^{-x}~dx I = [ − cos x e − x ] a b − a ∫ b ( − ) sin x ( − ) e − x d x > I = [ − cos x e − x ] a b − ∫ a b ( − ) sin x ( − ) e − x d x \displaystyle I =\biggr[-\cos x~\; e^{-x}\biggl]^b_a~~-~~\int\limits^b_a ~(-)\sin x~(-)e^{-x}~dx I = [ − cos x e − x ] a b − a ∫ b ( − ) sin x ( − ) e − x d x
u = sin x a n d v ′ = e − x \displaystyle u=\sin x\qquad{\rm and}\qquad v'=e^{-x} u = sin x and v ′ = e − x
u ′ = cos x a n d v = − e − x \displaystyle u'=\cos x\qquad{\rm and}\qquad v=-e^{-x} u ′ = cos x and v = − e − x
I = [ − cos x e − x ] a b − [ sin x ( − ) e − x ] a b + ∫ a b cos x ( − ) e − x d x \displaystyle I =\biggr[-\cos x~\;~e^{-x}\biggl]^b_a~~-~~\biggr[\sin x~(-)e^{-x}\biggl]^b_a ~~+~~\int\limits^b_a ~\cos x~(-)e^{-x}~dx I = [ − cos x e − x ] a b − [ sin x ( − ) e − x ] a b + a ∫ b cos x ( − ) e − x d x
The last term is the integral we started with:
⟹ 2 ∫ a b cos x e − x d x = [ sin x e − x ] a b − [ cos x e − x ] a b \displaystyle \Longrightarrow~~~2~\int\limits^b_a ~\cos x~e^{-x}~dx~ =~\biggr[\sin x~\; e^{-x}\biggl]^b_a~~ -~~\biggr[\cos x~\; e^{-x}\biggl]^b_a ⟹ 2 a ∫ b cos x e − x d x = [ sin x e − x ] a b − [ cos x e − x ] a b
Integration Method 3: Partial Fractions
If we want to calculate the integral below, none of the previous rules allow us to make much progress.
∫ d x ( 2 x + 1 ) ( x − 5 ) \displaystyle \int {dx \over (2x+1)(x-5)} ∫ ( 2 x + 1 ) ( x − 5 ) d x
But, in this case, we can try splitting the denominator up into two fractions that we can deal with:
L e t 1 ( 2 x + 1 ) ( x − 5 ) = A ( 2 x + 1 ) + B ( x − 5 ) \displaystyle {\rm Let~~~~~} {1 \over (2x+1)(x-5)}={A\over (2x+1)} + {B\over (x-5)} Let ( 2 x + 1 ) ( x − 5 ) 1 = ( 2 x + 1 ) A + ( x − 5 ) B
If we multiply both sides by ( 2 x + 1 ) ( x − 5 ) (2x+1)(x-5) ( 2 x + 1 ) ( x − 5 ) , we get:
A ( x − 5 ) + B ( 2 x + 1 ) = 1 \displaystyle A(x-5)+B(2x+1)=1 A ( x − 5 ) + B ( 2 x + 1 ) = 1 so A x − 5 A + B 2 x + B = 1 Ax-5A+B2x+B=1 A x − 5 A + B 2 x + B = 1
We can then equate coefficients of x x x :
A + 2 B = 0 t h u s A = − 2 B ( A ) \displaystyle A+2B=0~~~~{\rm thus~~} A=-2B~~~~~~~~~~\rm (A) A + 2 B = 0 thus A = − 2 B ( A )
Equate units (coefficients of x 0 x^0 x 0 ):
− 5 A + B = 1 s o f r o m ( A ) : 10 B + B = 1 , B = 1 11 , A = − 2 11 \displaystyle -5A+B=1 ~~{\rm~~so~from~(A):~~} 10B+B=1,~~B={1\over 11}~,~~A=-{2\over 11} − 5 A + B = 1 so from ( A ) : 10 B + B = 1 , B = 11 1 , A = − 11 2
∫ d x ( 2 x + 1 ) ( x − 5 ) = − ∫ 2 d x 11 ( 2 x + 1 ) + ∫ d x 11 ( x − 5 ) \displaystyle \int {dx \over (2x+1)(x-5)}=-\int {2 dx\over 11(2x+1)} + \int {dx\over 11(x-5)} ∫ ( 2 x + 1 ) ( x − 5 ) d x = − ∫ 11 ( 2 x + 1 ) 2 d x + ∫ 11 ( x − 5 ) d x
Now use method of substitution on the first fraction:
u = 2 x + 1 \displaystyle u=2x+1 u = 2 x + 1
so d u d x = 2 \displaystyle \frac{du}{dx}=2 d x d u = 2 and d x d u = 1 / 2 \displaystyle \frac{dx}{du}=1/2 d u d x = 1/2
And on the second fraction:
w = x − 5 \displaystyle w=x-5 w = x − 5
so d w d x = 1 \displaystyle \frac{dw}{dx}=1 d x d w = 1 and d x d w = 1 \displaystyle \frac{dx}{dw}=1 d w d x = 1
∫ 2 d u 2 × 11 × u + ∫ d w 11 w = − ln u 11 + ln w 11 \displaystyle \int {2 du \over 2 \times 11 \times u} + \int {dw\over 11w}= -{\ln u\over 11} + {\ln w \over 11} ∫ 2 × 11 × u 2 d u + ∫ 11 w d w = − 11 ln u + 11 ln w > = − ln ∣ 2 x + 1 ∣ 11 + ln ∣ x − 5 ∣ 11 \displaystyle =-{\ln |2x+1|\over 11} + {\ln |x-5| \over 11} = − 11 ln ∣2 x + 1∣ + 11 ln ∣ x − 5∣
SymPy can also solve integrals requiring partial fractions:
Copy sp . integrate ( 1 / ( ( 2 * x + 1 ) * ( x - 5 ) ) , x )
log ( x − 5 ) 11 − log ( x + 1 2 ) 11 \displaystyle \frac{\log{\left(x - 5 \right)}}{11} - \frac{\log{\left(x + \frac{1}{2} \right)}}{11} 11 log ( x − 5 ) − 11 log ( x + 2 1 )
This answer seems different because of the arbitrary constant of integration.
Introductory problems
Introductory problems 1 By using suitable substitutions, evaluate the following integrals:
∫ x 2 ( x 3 + 4 ) 2 d x \displaystyle \def\d#1{{\rm d}#1} \int x^2(x^3+4)^2~~\d{x} ∫ x 2 ( x 3 + 4 ) 2 d x
∫ e − x ( 5 − 4 e − x ) d x \displaystyle \def\d#1{{\rm d}#1} \int e^{-x}(5-4e^{-x})~\d{x} ∫ e − x ( 5 − 4 e − x ) d x
∫ ( 1 + x ) ( 4 x 2 + 8 x + 3 ) d x \displaystyle \def\d#1{{\rm d}#1} \int (1+x)\sqrt{(4x^2+8x+3)}~\d{x} ∫ ( 1 + x ) ( 4 x 2 + 8 x + 3 ) d x
∫ 3 x e ( x 2 + 1 ) d x \displaystyle \def\d#1{{\rm d}#1} \int 3x e^{(x^2+1)}~\d{x} ∫ 3 x e ( x 2 + 1 ) d x
Introductory problems 2 Find the indefinite integrals, with respect to x x x , of the following functions:
x e 3 b x \displaystyle x\,e^{3bx} x e 3 b x
x 3 e − 3 x \displaystyle x^3\,e^{-3x} x 3 e − 3 x
x cos ( x ) \displaystyle x \cos (x) x cos ( x )
e b x sin ( x ) \displaystyle e^{bx} \sin(x) e b x sin ( x )
Introductory problems 3 Sketch the curve y = ( x − 2 ) ( x − 5 ) y=(x-2)(x-5) y = ( x − 2 ) ( x − 5 ) and calculate by integration the area under the curve bounded by x = 2 x=2 x = 2 and x = 5 x=5 x = 5 .
Main problems
Main problems 1 Evaluate the following indefinite and definite integrals:
∫ 6 ( 7 − x ) 3 d x \displaystyle \def\d#1{{\rm d}#1} \int \frac{6}{(7-x)^3}~\d{x} ∫ ( 7 − x ) 3 6 d x
∫ 13 x 3 ( 9 − x 4 ) 5 d x \displaystyle \def\d#1{{\rm d}#1} \int 13x^3(9-x^4)^5~\d{x} ∫ 13 x 3 ( 9 − x 4 ) 5 d x
∫ 2 5 5 log ( x ) d x \displaystyle \def\d#1{{\rm d}#1} \int_2^5 5\log(x)~\d{x} ∫ 2 5 5 log ( x ) d x
∫ x x ( 1 + log ( x ) ) d x \displaystyle \def\d#1{{\rm d}#1} \int x^x\,(1 + \log(x))~\d{x} ∫ x x ( 1 + log ( x )) d x
Main problems 2 Suppose the area A ( t ) A(t) A ( t ) (in cm2 ^2 2 ) of a healing wound changes at a rate
d A d t = − 4 t − 3 , \displaystyle \def\dd#1#2{{\frac{{\rm d}#1}{{\rm d}#2}}} \dd{A}{t} = -4t^{-3}, d t d A = − 4 t − 3 ,
where t t t , measured in days, lies between 1 and 10, and the area is 2 2\, 2 cm2 ^2 2 after 1 day.
What will the area of the wound be after 10 days?
Main problems 2 A rocket burns fuel, so its mass decreases over time.
If it burns fuel at a constant rate ρ k g / s \rho\,{\rm kg/s} ρ kg/s , and if the exhaust velocity relative to the rocket is a constant v e m / s v_e\,{\rm m/s} v e m/s , then there will be a constant force of magnitude ρ v e \rho v_e ρ v e propelling it.
The rocket starts burning fuel at t = 0 s t=0\,{\rm s} t = 0 s with total mass of m 0 k g m_0\,{\rm kg} m 0 kg , and runs out of fuel at a later time t = t f s t=t_f\,{\rm s} t = t f s , with a final mass of m f k g m_f\,{\rm kg} m f kg .
Newton's second law tells us that the instantaneous acceleration a a a of the rocket at time t t t is equal to the force propelling it at that time, divided by its mass at that time.
Write down an expression for a a a as a function of t t t .
By integrating this expression, show that the rocket's total change in velocity is given by v e ln ( m 0 m f ) . \displaystyle v_e \ln\left({m_0\over m_f}\right). v e ln ( m f m 0 ) .
Main problems 3 The flow of water pumped upwards through the xylem of a tree, F F F , is given by:
F = M 0 ( p + q t ) 3 / 4 , \displaystyle F = M_0(p+qt)^{3/4}, F = M 0 ( p + qt ) 3/4 ,
where t t t is the tree's age in days, p p p and q q q are positive constants, and M 0 p 3 / 4 M_0p^{3/4} M 0 p 3/4 is the mass of the tree when planted (i.e.\ at t = 0 t=0 t = 0 ).
Determine the total volume of water pumped up the tree in its tenth year (ignoring leap years) if:
q = 0.01 q=0.01\, q = 0.01 day− 1 ^{-1} − 1 , and
M 0 = 0.92 M_0=0.92\, M 0 = 0.92 l \, day− 1 ^{-1} − 1 .
Extension problems
Extension problems 1 Express 1 x ( x 2 − 16 ) i n t h e f o r m A x + B ( x + 4 ) + C ( x − 4 ) \displaystyle \frac{1}{x(x^2-16)}\quad{\rm in~the~form}\quad\frac{A}{x} + \frac{B}{(x+4)} + \frac{C}{(x-4)} x ( x 2 − 16 ) 1 in the form x A + ( x + 4 ) B + ( x − 4 ) C .
Hence calculate ∫ 1 x ( x 2 − 16 ) d x . \displaystyle \def\d#1{{\rm d}#1} \int\frac{1}{x(x^2-16)}\,\d{x}. ∫ x ( x 2 − 16 ) 1 d x .
Extension problems 2 The probability that a molecule of mass m m m in a gas at temperature T T T has speed v v v is given by the Maxwell-Boltzmann distribution:
f ( v ) = 4 π ( m 2 π k T ) 3 / 2 v 2 e − m v 2 / 2 k T \displaystyle f(v) = 4 \pi \left({m\over 2\pi k T} \right)^{3/2} v^2 e^{-mv^2/2kT} f ( v ) = 4 π ( 2 πk T m ) 3/2 v 2 e − m v 2 /2 k T
where k k k is Boltzmann's constant. Find the average speed:
v ‾ = ∫ 0 ∞ v f ( v ) d v . \displaystyle \def\d#1{{\rm d}#1} \overline {v} =\int_0^{\infty}v\,f(v)\,\d{v}. v = ∫ 0 ∞ v f ( v ) d v .
Extension problems 3 Baranov developed expressions for commercial yields of fish in terms of lengths, L L L , of the fish.
His formula gave the total number of fish of length L L L as k e − c L \displaystyle k\,e^{-cL} k e − c L , where c c c and k k k are constants (k k k is positive).
Give a sketch of the graph f ( L ) = k e − c L \displaystyle f(L)=k\,e^{-cL} f ( L ) = k e − c L .
(Something decreasing, concave upward and asymptotic to horizontal axis will do.)
On your sketch, introduce marks on the horizontal axis that represent lengths L = 1 , L = 2 , L = 3 , L = 4 a n d L = 5 L=1, L=2, L=3, L=4 {\rm and } L=5 L = 1 , L = 2 , L = 3 , L = 4 and L = 5 .
Now draw a rectangle on your sketch that represents the number of fish whose lengths are between L = 3 L=3 L = 3 and L = 4 L=4 L = 4 .
Explain how we can represent the total number of fish N N N as an area.
Show that this number equals k / c k/c k / c .
Only fish longer than L 0 L_0 L 0 count as commercial. Hence, assuming that the fish are all similar in shape (i.e. their width and breadth scales with their length) and of equal density ρ \rho ρ , show that the weight, W W W , of the commercial fish population is
W = ∫ L 0 + ∞ a k ρ L 3 e − c L d L , \displaystyle \def\d#1{{\rm d}#1} W= \int_{L_0}^{+\infty} a\, k \rho\,L^3 e^{-cL}\,\d{L}, W = ∫ L 0 + ∞ a k ρ L 3 e − c L d L ,
W = N a ρ e − c L 0 c 3 ( ( c L 0 ) 3 + 3 ( c L 0 ) 2 + 6 c L 0 + 6 ) , \displaystyle W={N\, a\, \rho\, e^{-cL_0}\over c^3} \left((cL_0)^3 +3(cL_0)^2+ 6cL_0 +6\right), W = c 3 N a ρ e − c L 0 ( ( c L 0 ) 3 + 3 ( c L 0 ) 2 + 6 c L 0 + 6 ) ,